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Abstract—Video has emerged as a predominant medium in
today’s digital era. Efficient storage and transmission of video
necessitate encoding and compression, yet excessive compression
can significantly degrade quality. Visible Difference Predictor
(VDP) metrics are pivotal in predicting and quantifying the
visibility of image distortions, relying on models of the human
visual system (HVS). While deep learning enables advanced
image VDPs, video VDPs encounter greater complexities. In
this work, we introduce the Deep Video Visible Difference
Metric (DV2DM) and the ViLocVis dataset, the first dataset
tailored for training deep video visible difference metric. The
ViLocVis dataset, a hybrid of manually annotated and synthetic
data, accounts for variables including viewing distance, display
luminance and frame rate. Utilizing a calibrated spatio-temporal
display model coupled with a customized U-ViT architecture, our
approach captures spatio-temporal features effectively, demon-
strating significant performance improvements. In addition, we
provide several applications based on the DV2DM within the
fields of machine learning and computer vision, showcasing its
generalizability.

Index Terms—DV2DM, Visible Difference Predictor, Video
Quality Metric, Human Visual System

I. INTRODUCTION

V ISIBLE Difference Predictor (VDP), intending to predict
a map of pixel-wise visible difference from image or

video pairs, plays an important role in giving effective sugges-
tions on analyzing difference based on human visual system
(HVS). With the development of communication technology,
especially the rapid popularization of mobile Internet, the
application of video in daily life is becoming more and more
frequent. The urgent need for video compression means that
better metrics need to be found. Such prediction holds signif-
icant potential within the domain of computer vision, such
as image and video compression, reconstruction, rendering
and the emerging technologies of virtual reality (VR) and
augmented reality (AR).

Note that VDP is quite different with similar field of
research, quality metrics, which aims to evaluate the quality
of an image or video by a single value. On the one hand,
VDP considers the human vision system factors hence it is
a subjective metric. On the other hand, The VDP algorithm,
in contrast, intends to returns a pixel-wise map instead of a
single value, which providing with difference details on each
location of the image [44], [45].

Most existing VDP work focuses on the image domain.
However, with the proliferation of mobile Internet, video has
become one of the most popular media today, making the
need for video VDP increasingly urgent. For example, the
transmission and storage of video almost always involves
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Fig. 1. The framework of our DV2DM, which consists a display model
and a nerual network. Different from video quality assessment (VQA), visual
difference predictor predicts the visual heatmap instead of a single value.

compression algorithms. In general, compression algorithms
strive to reduce the storage space occupied by the video while
losing as little picture information as possible. However, clas-
sical video compression algorithms often ignore the subjective
perception of the viewer, which means over-compression and
computational waste on the discernible areas, leading to an
impaired viewing experience [13].

However, compared to VDP for images, video VDP faces
more challenges, such as time dimension and dynamic content.
Due to the temporal continuity between frames, the distortion
may persist for several frames, affecting the overall percep-
tion of the viewer [28]. In addition, it is difficult to cover
every frame of the video with annotation information, which
makes predicting visible differences in a dynamic scene more
complex than in a static image. Different video frame rates
can affect the visibility of distortion. For example, a either
too high or too low frame rate might spoil the visibility of
differences, for sake that high frame rate may results into less
perceptible details and too slow frame rate may shorten the
relative window of visibility [40].

In this work, we explore Deep Video Visible Difference
Metric (DV2DM), a method for evaluating and predicting
visual differences or distortions in video content which can
be noticed by the observer, quantifying visual differences
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and simulating human visual response [42]. In addition, in
order to train DV2DM, we collect the open-source video
datasets and produce the ViLocVis dataset, the first dataset
tailored for training deep video visible difference metric. The
ViLocVis dataset is composed of manually annotated data and
synthetic data, which consists of more than 1,000 video pairs
and provides video annotations under various combinations of
viewing conditions.

This work provides a new study in the field of machine
learning and computer vision, which is significant for measur-
ing and enhancing video quality for the use of human viewers’
perceptual information, especially for this era of video media.
The ViLocVis dataset addresses the issue of lack of manually
annotated data to some extent within this research field, paving
the way for further exploration. Moreover, we extend the
application of DV2DM to various real-life scenarios and other
research areas such as machine learning and computer vision.
Specifically, our main contributions are as follows:

• We provide the subsequent research on video VDP with a
novel dataset ViLocVis of over 1000 video paris, which
includes annotation data from 10 volunteers across 11
open-source video datasets under various viewing condi-
tions, along with synthetic data containing 12 different
viewing conditions.

• We propose an effective method to apply deep learning
to the video VDP and achieve the state-of-the-art perfor-
mance, which is based on a U-ViT backbone tailored for
video VDP. The model architecture utilizes a Siamese U-
shaped network architecture with two encoding branches
and only one decoding branch.

• We consider multiple environmental factors, such as
viewing distance, display luminance and frame rate,
which enables the algorithm to better capture and model
the relationships between these variables.

• We provide examples of applications based on DV2DM.
For instance, content-adaptive watermarking, visually
lossless video compression, invisible adversarial attacks
and video super-resolution metric.

II. RELATED WORK

A. Human Visual System and Quality Metrics

1) Human Visual System: The Human Visual System
(HVS) refers to the biological system facilitating visual per-
ception, encompassing the eyes, neural pathways, and parts
of the brain that process visual data [25]. The study of
HVS is important for designing efficient algorithms from the
perspective of human eye perception. For example, the HVS
is leveraged to design efficient video and image compression
algorithms, where information less perceived by the human
eye might be deprioritized or omitted during compression [22],
[35].

2) Image Quality Metrics: The measurement for quality of
an image is quite a mature field of research. Fundamental
approaches (e.g. MAE, MSE, PSNR) simply measure the
average difference in whole. SSIM [39], MS-SSIM [38], and
FSIM [47] further account for the contextual information

and structural similarity of image pairs. Machine-learning-
based method [5] treats the quality metric problem as a
classification process, where the quality is classified into a
five-level scale based on the Support Vector Machine, whereas
suffering from the subjective definition on quality levels. [48]
argues that human perception on similarity depends on high-
order structure and is context-dependence, hence introduced
a CNN-based method, which is demonstrated to outperform
substantially.

Recent advancements in display technologies highlight lim-
itations in existing image quality metrics which assume con-
sistent dynamic ranges between reference and test images.
Addressing this, [3] introduced a novel metric that can com-
pare images with varying dynamic ranges, leveraging insights
from the human visual system to detect and classify visible
structural changes in images. The utility of this metric was
further demonstrated in evaluating tone mapping operators and
diverse display characteristics.

3) Video Quality Metrics: Video quality is evaluated in dif-
ferent ways from image, due to differences in HVS’s handling
dynamic and static content. For example, high-frequency noise
can be clearly shown in image, whereas less noticeable in high-
frame-rate video due to fusion of successive frames [19].

Video Quality Assessment (VQA) techniques are bifurcated
into no-reference and full-reference metrics. No-reference
metrics evaluate videos relying solely on the test video
itself [31] while full-reference metrics compare distortions
in the test video against the reference video. Early studies,
notably [41] used basic statistical methods to model discrete
cosine transform (DCT) quantization noise visibility in digital
video quality metrics. [43] discusses the evolution of video
quality metrics towards hybrid models blending objective and
subjective elements. Machine learning advancements leverage
accuracy and consistency [23], [30]. Deep learning further
advances with end-to-end neural network [1], [12], [14]. [12]
further takes spatio-temporal perception CNN into account.
For HDR videos, [24] introduces a calibrated method focusing
on noticeable distortions through spatial segmentation and
temporal pooling.

B. Visible Difference Predictor

1) VDP: While VQA provides overall video quality assess-
ment through scores, VDP offers finer pixel-level predictions
of visible differences in images or videos, which emulates
human visual perception to predict the noticeability of visual
distortions. It can be traced back to [9] and subsequent
research tailors white-box visibility metrics to assess the
possibility for human to detect contrasts between image pairs.

The Spatial-CIELAB metric [49] focuses on the color
reproduction errors of digital images. It extends the traditional
CIELAB [10], which is originally designed for matching
large uniform colored areas, to general chromatic images, by
tailoring color transformation and spatial filters according to
psychophysical experiments on the HVS. Note that, the spatial
kernels relies on a Contrast Sensitivity Function (CSF) taking
the exponential form, which is over-simplified and cannot
generalize well to the more complex cases of images.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Subsequent to early VDP models [9], [18], [27], which
incorporated complex low-level vision models but were lim-
ited by data scarcity, hindering extensive machine learning
application. These models relied on detailed HVS models with
minimal trainable parameters, restricting efficacy in complex
scenarios. [44] mitigates this by introducing a new dataset for
image distortion visibility, enabling machine learning advance-
ments. [45] expands this by incorporating viewing condition
factors such as luminance and viewer distance.

With the shift to High Dynamic Range (HDR) imaging,
[17] enhances VDP to accurately predict visible differences
in HDR scenarios, considering HDR display contrast ratios
and real scene adaptation conditions. This approach, calibrated
with high-end HDR displays, also accounts for optical light
scattering and local adaptation. Further advancements in HDR-
VDP are noted [18], [24].

The trade-off between accuracy and computational effi-
ciency in SDR and HDR metrics remains a challenge. Metrics
like HDR-VDP2.2 [24] emulate the HVS well but are com-
putationally demanding. Simpler metrics like PSNR or MSE
often miss critical HVS elements. To balance efficiency and
accuracy, [4] introduces NoR-VDPNet++, a CNN-based metric
optimizing the precision of HDR-VDP2.2.

2) Video VDP: In video contexts, visibility difference
prediction necessitates additional considerations like spatio-
temporal characteristics and spatial error signals [12]. Despite
its significance, research on video VDP remains scarce. [19]
pioneers by introducing the first video VDP tailored for
foveated displays, such as VR or head-mounted displays, and
involves calibration of psychophysical models and the HVS.

III. DATA COLLECTION

To collect responses of the human visual system (HVS)
to distorted videos under various luminance and viewing dis-
tance, we produce a dataset named ViLocVis, which comprises
of several reference-distorted video pairs and corresponding
marking videos. The dataset can be divided into two parts:
manually annotated data and synthetic data.

TABLE I
DATASETS DETAILS

Dataset Videos Resolution FPS
HEVC-B [36] 5 1920x1080 24, 50, 60
HEVC-C [36] 4 832x480 30, 50, 60
HEVC-D [36] 4 416x240 30, 50, 60
HEVC-E [36] 6 1280x720 60

HEVC-F [36] 4
1280x720,
1024x768,
832x480

20, 30, 50

LIVE-APV [32], [33] 45 3840x2160 25, 30
LIVE-SJTU [21] 14 1920x1080 24, 25, 30
MCL-JCV [37] 30 1920x1080 24, 25, 30

MCML [7] 10 3840x2160 30
SJTU4K [34] 15 3840x2160 30

UVG [20] 16 3840x2160 50, 120

The reference videos are from open-source datasets, includ-
ing the HEVC Standard Test Sequences (Class B, C, D, E,
and F) [36], LIVE-APV [32], [33], LIVE-SJTU [21], MCL-
JCV [37], MCML [7], SJTU4K [34] and the Ultra Video

Group (UVG) dataset [20]. Table I provides a summary of
the datasets. These videos cover a wide range of resolutions
and frame rates in common scenarios.

A. Data Preparation

Before the annotation process, considering that higher video
resolutions result in increased storage and computational costs,
the videos with a resolution with 3840x2160 in the original
datasets are downsampled to 1920x1080. Additionally, to
facilitate the annotation process by enabling annotators to
simultaneously view reference and distorted videos, thereby
enhancing the ability to discern and annotate distortions in
the videos, we crop the videos into a square format to align
with the resolution ratio of the annotation display monitors.

Since the most common distortion in video is caused by
compression, we employ compression method to generate
distorted videos. Considering the popularity of compression
encoders, we select the widely used H.264 and H.265. During
the compression process, we appropriately adjust the com-
pression parameters to ensure that most distortions in the
compressed videos are perceptible.

It is note-worthy that there are also other common types
of distortion, such as noise, blur and watermark. In addi-
tion, new distortions introduced by neural networks are also
worth attention with respect to the emerging of learning-
based compression and reconstruction algorithm [2], [6], [11],
[16]. However, as an initial work, we carefully start with the
classical compression algorithm and stress out the importance
of our first step into locally annotated videos.

B. Manually Annotated Data

In order to understand human’s visibility on distortion in
videos, we conduct a set of experiments to collect a dataset
from participants. Specifically, we recruit 10 subjects to per-
form video annotation in a unified experimental environment.
In Figure 2, our annotation software is shown. The left and
right image regions show the reference video and the distorted
video respectively in the pause state.

After the participant starts the annotation, the reference
video and the distorted video will playing at the same time.
During this process, the participant is required to perceive
the distortion is the video while the video is playing, and
memorize the location and the frame id. It is worth mentioning
that we ask the participant not to pause during the video
playback to perceive the distortion in the still image. At the
end of the video playback, both the left and right image regions
will display the reference video, at which time, the participant
can pause the video and rewind the video back to the specified
frame for annotation. In this way, the distortion labeled by the
participant is not the distortion perceived in the still image,
but the distortion perceived in the dynamic process.

The observers view the display at all combinations of three
distance levels (40 cm, 65 cm and 80 cm, which correspond
to pixel per degree of 30, 50 and 60, respectively) and three
screen luminance levels (110 cd/m2, 200 cd/m2, and 300
cd/m2).
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Fig. 2. The user interface of our labelling tool in the pause state, where the
layout is: A) the reference video, B) the distorted video, C) the progress bar,
D) Current frame and total frames, and E) Number of frames have been saved.
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Fig. 3. The experiment environment, where the left photo shows the physical
environment for subjects to label the videos, and the right photo shows the
same environment at the actual ambient lighting conditions.

However, allowing subjects to annotate the distortion videos
frame by frame from memory poses a series of challenges,
such as the inability to remember the distortion of each frame
in a single viewing of the video, and multiple viewings of
the video leading to subject fatigue and adaptation to the
distortion, which affects the quality of the labeling. To avoid
frame-by-frame annotation while obtaining annotated data
with high fidelity, we utilize the Kernel Density Estimation
(KDE) method and the optical flow method to achieve the
spatio-temporal sparse annotation of videos, where subjects
only need to annotate a few frames.

1) KDE: The Figure 4 shows the different levels of distor-
tion and labeling that subjects perceived for the same video
under different viewing conditions. It is obvious that the
subjects label the areas where they could perceive distortion
as 1 and the other areas as 0. On the one hand, due to the
labeling principle, the subjects cannot label the probability
of perceiving distortion, but only whether or not they could
perceive distortion. On the other hand, such a sparse annotated
data is not conducive to the training process of the neural
network, as the neural network will quickly fall into local
optima during training, outputting a heatmap entirely filled
with 0. Therefore, it is necessary to employ the KDE method
to transform the sparse annotated data of the annotated frames
into dense annotated data, simultaneously achieving probabil-
ity density modeling.

Reference Distorted Level 1 Level 2 Level 3

Fig. 4. Different levels of labelling: {“Level 1”, “Level 2”, “Level 3”}
showcases different levels of labelling from coarse to fine, e.g. luminance
from low to high, ceteris paribus.

Reference Distorted Origin KDE Origin Color KDE Color

Fig. 5. The annotations before and after applying the KDE method.

The KDE method [53], [54] is a non-parametric estimation
method for estimating the probability density function. The
KDE method is commonly used to approximate the true
distribution of data through smoothing data points, particularly
when there is no prior knowledge about the data distribution.
Suppose the data points are represented as [x1, x2, . . . , xn],

its density estimator is f̂h(x) =
1

n

n∑
i=1

Kh(x − xi) =

1

n

n∑
i=1

K

(
x− xi

h

)
, where K is the kernel function and h

is the bandwidth.
Since the perception process of the human eye can be

approximated as a 2d-Gaussian distribution, we model the
annotation process in the labeled frames as the following prob-
lem: The data points are [(x1, y1), (x2, y2), . . . , (xn, yn)]
and the kernel function is the 2d-Gaussian kernel, the density
estimation of any point (x, y) is

f̂h1, h2
(x, y) =

1

nh1h2

n∑
i=1

K

(
x− xi

h1

)
K

(
y − yi
h2

)
=

1

nh1h2

n∑
i=1

1√
2πh1

e
− (x−xi)

2h2
1

1√
2πh2

e
− (y−yi)

2h2
2

(1)
Therefore, through the KDE method, it is possible to

achieve sparse annotation within labeled frames of videos.
The comparison between annotations before and after applying
the KDE method is shown in Figure 5. It’s evident that
the annotated data processed with KDE maintains semantic
consistency with the original annotated data while becoming
denser and more continuous on the spatial level.

2) Optical Flow: As the subjects only need to label several
frames, we employ the optical flow estimation method to
obtain the annotated data of other unlabeled frames. According
to the optical flow method, there is X(x+ u, y+ v, t+1) =
X(x, y, t), where u and v are the optical flow. Additionally,
due to the directionality of optical flow, we use uf , vf to
denote the forward optical flow and ug, vg to denote the
backward optical flow. Then we can define the functions f
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and g as follows:

f(X(t)) = X(t+ 1)

= X(x+ uf (x, y, t), y + vf (x, y, t), t)

g(X(t)) = X(t− 1)

= X(x+ ug(x, y, t), y + vg(x, y, t), t)

(2)

Further, we can define X(t + 2) = f(X(t + 1)) =
f(f(X(t))) = f ◦ f(X(t)) = f2(X(t)) and X(t − 2) =
g(X(t− 1)) = g(g(X(t))) = g ◦ g(X(t)) = g2(X(t)).

It is note-worthy that due to errors inherent in optical
flow method, the relationship X(t) = f(X(t − 1)) =
g(X(t + 1) does not universally hold. Moreover, the in-
tervals between annotated frames may be substantial. To
reduce the error of the optical flow method while model-
ing the long-range relationship, we introduce two confidence
factors ωf and ωg to represent the confidence levels for
forward and backward optical flow, respectively. Thus, we

can get X(t) =
ωff(X(t− 1)) + ωgg(X(t+ 1))

ωf + ωg
. Further-

more, these confidence factors undergo exponential decay as
they relate to distance, leading to the following formulation

X(t) =
ωa
ff

a(X(t− a)) + ωb
gg

b(X(t+ b))

ωa
f + ωb

g

.

Since distortions within videos often correlate with the
content of the region and exhibit good temporal consistency,
it can be assumed that the annotated data for distorted regions
also maintains excellent temporal consistency. This implies
that the optical flow calculated from reference video aligns
with that derived from labeled video. Consequently, by com-
puting the optical flow from the reference video and then
applying it on labeled frames, the annotations for the entire
video sequence can be obtained. Let Xref and Y represent
the reference video and labeled video separately, there is
Xref(t+ 1) = f(Xref(t)), Y (t+ 1) = f(Y (t)).

Assuming that subjects only annotate frame
Y (t1), Y (t2), . . . , Y (tn), where t1 < t2 < · · · < tn,
we can get the annotated data of the entire video as follows:

Y (t) =



Y (t)

if t ∈ {t1, t2, . . . , tn}
gt1−t(Y (t1))

if t < t1

f t−in(Y (tn))

if t > tn
ωa
ff

a(Y (tm)) + ωb
gg

b(Y (tm+1))

ωa
f + ωb

g

if tm < t < tm+1

(3)
where a = t − tm, b = tm+1 − t,m ∈ {1, 2, . . . , n − 1}.
Therefore, we can achieve the temporal sparse annotation.

3) Order of KDE and Optical Flow: Although the sparse
annotation can be achieved by KDE method and optical flow
method, the order of applying KDE and optical flow method
remains an issue.
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Fig. 6. The annotations under different orders of KDE and optical flow.

Firstly, if we apply the KDE method before the op-
tical flow method, according to the Equation 1, we can
get the data distribution of labeled frame is Y (x, y, t) =

1

nh1h2

n∑
i=1

K

(
x− xi

h1

)
K

(
y − yi
h2

)
. In the case of consid-

ering only the forward optical flow uf , vf , we can get

Y1(x, y, t+ 1) = Y (x+ uf (x, y, t), y + vf (x, y, t), t)

=
1

nh1h2

n∑
i=1

K

(
x+ uf (x, y, t)− xi

h1

)
·K

(
y + vf (x, y, t))− yi

h2

)
(4)

Then, if we apply the KDE method after the optical
flow method, suppose the data points in the t frame
are [(x1, y1), (x2, y2), . . . , (xn, yn)], the data points
obtained by the optical flow method in the t−th frame
are [(x1 + uf (x1, y1, t1), y1 + vf (x1, y1, t1)), (x2 +
uf (x2, y2, t2), y2 + uf (xn, yn, tn)), . . . , (xn +
uf (xn, yn, tn), yn + vf (xn, yn, tn))]. After applying
KDE method in the (t+ 1)−th frame, we can get

Y2(x, y, t+ 1) =
1

nh3h4

n∑
i=1

K

(
x− xi − uf (xi, yi, ti)

h3

)
·K

(
y − yi − vf (xi, yi, ti)

h4

)
(5)

By comparing the Equation 4 and the Equation 5, it is
obvious that the Equation 4 takes into account the optical flow
for each point while Equation 5 only considers the optical flow
from the annotated points without utilizing the complete set
of optical flow data.

As shown in the Figure 6, the annotated data obtained
by both orders of KDE method and optical method appears
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visually similar. However, employing the KDE method first,
followed by the optical flow method, allows the annotation
details to retain certain contours related to objects within the
frame, such as the tree trunks. Conversely, applying the optical
flow method before the KDE method results in generated
annotated data that exhibits overall contour blurriness.

Hence, on the one hand, applying the KDE method first
enables the effective utilization of all available optical flow
data. Concurrently, it permits the annotated data to exhibit
some alignment with the contours of relevant objects, thereby
producing outcomes more consistent with human perception
of video content.

On the other hand, due to the time complexity of the KDE
method is O(n2), where n is the number of data points.
Assuming that the subject labels t frames out of a video with
T frames, with each frame containing n data points, the time
complexity for first applying the KDE method is approxi-
mately O(tn2) + Ooptical, where Ooptical denotes the time
complexity for calculating optical flow. Furthermore, since
the optical flow estimation method may not map coordinates
onto integer coordinate points, it’s often necessary to perform
bilinear interpolation to distribute non-integer coordinate data
across surrounding integer coordinate points. Hence, the time
complexity for first employing the optical flow estimation
method approximates to O(Tn2

optical) + Ooptical. It is clear
that T > t, noptical > n, the time complexity of applying
optical flow method first far exceeds the reverse sequence.
As a result, from both temporal efficiency and effectiveness
perspectives, employing the KDE method prior to the optical
flow estimation proves superior.

C. Synthetic Data
Due to the time-consuming manual annotation process and

the limited diversity in luminance and viewing distance of the
manually annotated data, coupled with the substantial need for
semantically rich annotations during the training and testing
process of the model, we choose to utilize the white-box video
visibilty metric FovVideoVDP [19] to generate a large volume
of synthetic data for the pre-training stage of the model.

To collect diverse luminance and viewing distance data, we
set luminance levels to 10 cd/m2, 110 cd/m2, 200 cd/m2, and
configure viewing distance measured in angular resolution as
30, 40, 50, 60 pixel per degree (PPD). Therefore, we build
12 observation environments and applied FovVideoVDP to
generate the heatmap across these environments.

However, the heatmaps generated by FovVideoVDP cannot
be directly utilized. It is because its pixel values do not
represent the probability of an observer perceiving distortion at
the corresponding pixel. Instead, they are in just objectionable
difference (JOD) units, which stands the level of distortion
and do not align with the physical meaning of the manually
annotated data. Therefore, we convert the JOD values to
probabilities using the following equation:

P (x, y) =
1√
2πσ

∫ J(x,y)−min(J)

−∞
e

−t2

2σ2 dt (6)

where P (x, y) is the probability of an observer perceiving
distortion at pixel (x, y), J(x, y) is the JOD value of the pixel,

min(J) is the minimum JOD value in the heatmap, and σ is
the standard deviation of the JOD units.

IV. METRIC ARCHITECTURE

A. Spatio-Temporal Display Model

The accuracy and effectiveness of Video Visible Difference
Predictor (VDP) relies on accurately simulating the human
visual system (HVS), where three core aspects are of most
significance, namely, pixel per degree (PPD), brightness (Lu-
minance) and frame rate (FPS) [45].

Pixel per degree (PPD) reflects the impact of image resolu-
tion on visual clarity. High PPD means higher image details,
which are closer to the perception of the human eye in a
natural viewing environment. Therefore, this physiological
characteristic must be considered when VDP is simulated
and evaluated to avoid unnecessary investment of resources
beyond the range of human visual resolution [45]. Let PPD
denote the Pixels Per Degree, a crucial metric in screen
resolution analysis that quantifies the number of pixels visible
per degree of visual angle. Its computation is determined by
the equation 7:

PPD =
R

Wθ
(7)

where R refers to the screen resolution, W represents the
screen width, and θ corresponds to the field of view, an angular
measure representing the angle subtended by the observer
and the screen, which can be further defined by the viewing
distance D:

θ = 2 · arctan
(
W

2D

)
(8)

Luminance is another key factor in the display model, which
directly affects the perception and visual comfort of the image.
The visibility of difference in human eyes can be dramatically
distinct by different brightness levels, and the grasp of this
dynamic range is crucial in VDP [18]. To account for the
variation of luminance, we adopt a transform model by the
following equation:

L′ = Lblack + (Lpeak − Lblack)

(
I

MAXI

)γ

(9)

where I is the original pixel value by R-G-B channels, MAXI

is the maximal pixel value in the corresponding channel,
Lpeak is the peak luminance, Lblack is the luminance when
displaying pure black and gamma is the gamma value, usually
2.2.

Frame rate (frame per second, FPS) is also important in
video VDP, especially when evaluating video content. FPS
affects the smoothness and visual continuity of video streams,
while HVS has significant differences in perception of dif-
ferent frame rates, especially when dealing with fast-moving
scenes [40]. In order to allow the model to respond to videos
with different FPS, we use interpolated frames to align the
FPS to the target. The formula is as follows:

n =

⌊
FPStarget
FPScurrent

+ 0.5

⌋
(10)
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Fig. 7. The architecture of DV2DM, which is a customized U-ViT with two
encoding branches and one decoding branch. Each transformer encoder stage
contains two successive transformer encoder block, performing sptial attention
and temporal attention separately.

where n is the number of repetitions per frame during frame
interpolation, FPScurrent is the frame rate of the video, and
FPStarget is the target frame rate after frame interpolation.

B. U-ViT Architecture

The U-ViT architecture specifically tailored for Video Visi-
ble Difference Predictor is illustrated in Figure 7, handling 3D
data (time, height, and width) to accommodate the dynamic
nature of videos.

This U-VIT architecture specialized for Video Visible Dif-
ference Predictor can adeptly handle 3D data consisting of
time, height, and width to accommodate the intricacies of
video dynamics. Beginning with two distinct input streams, the
reference and distorted video volumes are initially processed
by the spatio-temporal display model, laying the foundation for
their progression through the network. Both streams encounter
a patch embedding layer early on, ensuring the input is a series
of spatio-temporal tokens. As the streams delve deeper into
the encoding branch of the U-ViT, they undergo a systematic
sequence of transformer encoder stage. Each of transformer
encoder stage is complemented by a duo of two transformer
encoder blocks, where the first block performs spatial attention
and the second performs temporal attention. This design choice

facilitates the extraction of multi-scale features while adeptly
learning the spatial and temporal features.

At the architecture’s midpoint, the processed streams from
both branches converge. In the middle stage, the combined
features of both streams are further refined with one trans-
former encoder stage, ensuring a cohesive merge. This merged
representation then embarks on the decoding branch of the U-
ViT. Similar with the encoding branch, the decoding branch
consists of a series of transformer encoder stage. At each stage,
spatial attention and temporal attention work in tandem to
refine and reconstruct the video volume. The culmination of
this intricate process is the final few layers where the data,
processed through an additional linear layer, is mapped to
its final output format via a 1x1 Conv3D layer. This output
delineates the visible differences in the videos, spotlight-
ing perceptual discrepancies between the reference and dis-
torted inputs. By synergizing the U-ViT’s U-shaped structure
with spatio-temporal attention mechanisms, this architecture
achieves remarkable proficiency in capturing and representing
subtle differences in video content.

Our architecture excels in video Visible Difference Predictor
(VDP) due to its intrinsic ability to comprehend both spatial
and temporal context within video data. Its U-shaped architec-
ture empowers it to capture and refine features across varying
levels of detail, making it adept at identifying visible differ-
ences in video content. This is further enhanced by its multi-
scale feature extraction capability through spatio-temporal
attention mechanisms. The incorporation of attention allows
the model to focus on key regions, crucial for pinpointing areas
where differences manifest. U-ViT’s resilience, facilitated by
residual connections, enables the handling of deep networks,
necessary for capturing intricate patterns within video data.
Consequently, U-ViT architectures deliver state-of-the-art re-
sults in VDP, which can be demonstrated in Section V.

V. EXPERIMENT

A. Experimental Setup

For training Deep Video Visible Difference Metric
(DV2DM), we employ the probability loss function proposed
by [44]. The loss function offers a crucial method to model the
experiment data, where it conceptualizes the human annotation
process as a sequence of discovery, attention and detection
activities to capture the uncertainty in the human-annotated
dataset.

Following the pre-processing stage, we split the video into
numerous non-overlapping patches and remove the patches
where there is no difference between reference patch and
distortion patch. Each patch consists of 12 frames and the
size of each frame is 48x48.

We implement DV2DM on the PyTorch v2.0 frame-
work [26] and utilized MMEngine v0.9.0 [8] to perform
distributed training on 8 NVIDIA Ampere A100 GPUs. During
the training process, we use the adaptive moment estimation
with weight decay (AdamW) [15] optimizer with a learning
rate of 1 × 10−4. We partition the training process into two
stages, as explained below.
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TABLE II
CROSS-VALIDATION RESULT.

All P30L110 P30L200 P30L300 P50L110 P50L200 P50L300 P60L110 P60L200 P60L300
MSE 12.8± 3.09 13.3± 2.89 13.4± 2.68 14.3± 3.12 13.8± 3.35 14.5± 3.34 13.2± 3.31 14.1± 2.92 13.6± 3.34 13.7± 3.22
PSNR 6.19± 4.48 6.04± 4.48 6.08± 4.48 5.18± 4.54 5.32± 4.45 5.15± 4.57 5.20± 4.53 4.98± 4.58 5.15± 4.55 5.44± 4.52
SSIM 4.45± 1.40 4.89± 1.06 4.83± 1.26 3.94± 1.26 4.10± 1.57 4.21± 1.07 3.72± 1.23 3.92± 1.37 3.80± 1.15 4.18± 1.40

PU MSE 12.9± 3.06 13.4± 2.80 13.4± 2.59 14.5± 3.14 14.0± 3.44 14.7± 3.41 13.4± 3.14 14.2± 2.83 13.8± 3.19 13.9± 3.21
PU PSNR 5.91± 4.40 6.00± 4.24 5.94± 4.32 4.92± 4.48 5.11± 4.41 5.09± 4.40 4.85± 4.49 4.77± 4.53 4.93± 4.46 5.24± 4.43
PU SSIM 5.02± 1.25 4.97± 1.29 5.12± 1.38 4.19± 1.31 4.50± 1.44 4.15± 1.20 4.00± 1.15 3.85± 1.28 3.81± 1.15 4.43± 1.39

DPVM 13.4± 4.13 13.3± 3.91 13.7± 4.19 13.1± 4.08 13.3± 4.39 13.6± 4.09 12.0± 4.00 12.4± 4.17 12.6± 3.96 13.1± 4.21
FovVideoVDP 4.06± 1.05 3.99± 0.73 4.28± 1.05 3.30± 0.73 3.55± 0.73 3.49± 0.71 3.72± 1.18 3.80± 1.18 3.85± 1.07 3.72± 0.94

DV2DM 2.59± 1.23 2.59± 1.21 2.43± 0.65 2.43± 0.83 2.60± 0.77 2.69± 1.07 2.73± 0.74 2.72± 0.80 2.96± 0.95 2.63± 0.91

B. Training Details

1) Pre-training Stage: Due to the limited variations in
luminance, viewing distance and FPS in the manually anno-
tated dataset, we initially conduct our training process on the
synthetic dataset containing over 1 million patches. The gen-
eration of the synthetic dataset is described in Section III-C.
Although the labels generated by the white-box visibilty
metric FovVideoVDP [19] may not be entirely accurate, they
characterize the general relationship between the original data
and labels under different observation environments, aiding the
model in capturing these relationships more effectively, which
may be lacking in the manually annotated dataset.

2) Fine-tuning Stage: In this stage, we initialize the model’s
weights with pre-trained weights and fine-tune it using manu-
ally annotated data. The data processing workflow during fine-
tuning stage remains consistent with the pre-training stage.

C. Result

To evaluate the performance of our model and minimize the
bias introduced by training-test split, we split the annotated
data into 5 folds and ensure that each data point belongs to
only one fold to perform 5-fold cross-validation. We report
the mean and standard deviation of the likelihood used for the
loss function after applying the negative log transformation.
A higher likelihood corresponds to a smaller negative log-
likelihood, indicating a higher accuracy.

We compare DV2DM with other methods on the manually
annotated data. The compared methods range from traditional
metrics such as MSE, PSNR and SSIM to metrics employing
perceptually uniform encoding such as PU-MSE, PU-PSNR
and PU-SSIM [46]. In addition, our comparsion includes the
deep image VDP, DPVM and the unique but training-free
video VDP, FovVideoVDP. Since the manually annotated data
includes three difference viewing distances and three different
screen luminances, the result of cross-validataion is shown
separately in Table II.

According to the result, similar trends are observed among
different methods when evaluating their cross-validation re-
sults over the entire test set and its subsets. Notably, compared
to other approaches, DV2DM exhibits the lowest mean and
standard deviation of negative log-likelihood values across
the whole dataset and all subsets. This outcome indicates
that DV2DM consistently performs well under various view-
ing conditions. Additionally, it should be noted that some
fluctuations occur in the performance of all methods across
different subsets, which is mainly attributed to variations
in video content between these subsets. While SSIM and

PU-SSIM seemed to yield better outcomes according to the
table, they lacked responsiveness towards factors like PPD
and video frame rate. Consequently, ablation experiments were
conducted to clarify this phenomenon.

D. Ablation Study

In order to examine whether DV2DM can account for the
change of view conditions such as viewing distance, luminance
and frames per second, we conduct a series of ablation
experiments and report the results in Figure 8. We vary the
view conditions for the manual annotation process on identical
video contents.

Based on the results shown in Figure 8, it is obvious that
MSE provides little prediction for distortions in the videos,
consequently leading to higher negative log-likelihood levels.
Both PSNR and PU-PSNR methods map pixel differences
into the logarithmic domain, resulting in perceived difference
visibility heatmaps with inferior visual effects compared to
other approaches.

For SSIM and PU-SSIM, which perform better according
to Table II, although they exhibit some similarity to human
annotations, their predictions do not align with the perception
process of the human visual system. As illustrated in the
PPD comparison (Figure 8, rows 5 and 6), both SSIM and
PU-SSIM assign high predicted values to background walls;
however, this region is high-frequency areas where human eyes
struggle to perceive differences. The absence of background
annotations in human-labeled data further supports the argu-
ment that SSIM and PU-SSIM predictions deviate from human
visual perception processes.

For the DPVM method, while accounting for PPD and
luminance impacts on predictive outcomes, its application as
an image VDP fails to consider frame rate specific to videos.
Additionally, DPVM’s conservative predictions lead to overall
elevated negative log-likelihood levels.

Both FovVideoVDP and DV2DM provide corresponding
feedback for different viewing distances, luminance, and FPS,
where the general trends are coordinated, while DV2DM
yields explicitly better predictions. Furthermore, despite expe-
riencing overestimation issues, since these two methods gen-
erally reflect human perception outcomes accurately, practical
solutions like raising threshold values may alleviate concerns
related to overestimation.

More ablation results are shown as Figure 13, Figure 14
and Figure 15.
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Fig. 8. Reference images, labels and metrics’ predictions examples from the manually annotated data. NLL represents negative-log-likelihood.

VI. APPLICATIONS

A. Content-adaptive Watermarking

With the advance in the Artificial Intelligence Generated
Content (AIGC) technology, numerous images and videos are
used to train AIGC algorithms without authorization from the
authors. To protect the copyright of the authors, embedding
watermarks stands as a pivotal method. In the case of images
or videos, a watermark is often a logo or text that is almost
imperceptible but nevertheless real. Hence, the foundation of
our application lies in utilizing DV2DM to detect the correct
regions for watermark embedding and make the watermark
undetectable to the human eye.

In order to embed a watermark, we add a grid of watermark
patches in 64x64 pixels to the first frame of the original video.
Determining the watermark’s intensity involves employing a
grid search method. We start at a high watermark intensity
so that the difference is clearly visible. Then we iteratively
reduce the intensity until DV2DM indicates that the maximum
value of all patches for the first frame falls below a predefined
threshold. This process is repeated across all the frames to
generate the watermarked video.

Although DV2DM has not been trained specifically for
this distortion, the watermark added under the guidance of
DV2DM remains imperceptible, as shown in the Figure 9. The
results not only demonstrate DV2DM can detect the suitable
regions for watermark addition and guide the watermarking
process, but also highlight its adaptability to distortion types
absent in the training set. Furthermore, we provide the results
of watermarks multiplied by a constant to offer a clearer
view of the variations in watermark intensities. For example,
the clothing region, where there is a more noticeable color
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Fig. 9. Examples of content-adaptive watermark application.

variation and higher frequency, leading to a higher watermark
intensity. The intensity remains small in the low-frequency
regions.

B. Visually Lossless Video Compression
During the video compression process, inappropriate com-

pression parameters can lead to excessively large file sizes
or poor video quality. To balance the trade-off between file
size and video quality, visually lossless video compression
minimizes file sizes by making the distortion caused by com-
pression practically imperceptible to the human eye. Achieving
visually lossless video compression can depend on using
appropriate compression parameters, although determining
whether a video is visually lossless can pose a challenge.

Hence, we employ HEVC as our video codec, Constant Rate
Factor (CRF) as the compression parameter to optimize. and
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use DV2DM to determine if the compressed video is visually
lossless. Beginning with the highest CRF, which renders the
video quality unacceptable. We feed the compressed video into
DV2DM to generate the distortion heatmap. By averaging the
heatmap for each frame, if it is larger than the predefined
threshold, we decrease the CRF, improving video quality while
increasing file size. This iterative process continues until the
averaged heatmap value falls below the threshold. The frames
pairs are shown as Figure 10.

Reference Compressed Reference Compressed

Fig. 10. The frames pairs sampled from the original videos and visually
lossless compressed videos.

We set the threshold to 0.01, namely 99% of observers are
unable to detect the differences between the compressed videos
and the original videos. After obtaining the compressed videos,
we recruit 15 volunteers to conduct a Two-Alternative Forced-
Choice (2AFC) experiment, where volunteers are asked if
they could discern any differences between the compressed
and original videos. Based on the 2AFC experiment results,
95% of participants cannot perceive any distortion between
the two videos. Although 95% is less than 99%, our DV2DM
demonstrates some overestimation. Nevertheless, the results
highlight the potential of DV2DM guiding the visually lossless
video compression.

C. Invisible Adversarial Attacks

In the adversarial attack task, it is necessary to apply
imperceptible noise to the input data to induce errors in
the predictions of the model. However, a too low noise
intensity might fail to allow the model to produce erroneous
results while an intense noise may be detected by the human.
Therefore, we need to maximize the noise intensity while it is
almost imperceptible to the human eye, thereby achieving the
invisible adversarial attack.

Thus, we utilize our DV2DM to detect whether humans
can perceive the noise in the task of adversarial attack on
the video models. We use Multi-scale Vision Transformers
(MViT) [51], [52] as the target video classification model
and employ Fast Gradient Sign Method (FGSM) [50] as the

adversarial attack approach. We start with a intense noise
and iteratively reduce the noise intensity until the maximum
value of the heatmap predicted by DV2DM is less than the
threshold. The frames sampled from the input video and the
corresponding predictions of the model before and after the
adversarial attack and are shown as Figure 11.
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Fig. 11. Frame samples and predictions of the model before and after the
adversarial attack.

From the Figure 11, it is clear that there are errors in
the predictions of the model, while we cannot perceive the
noise in the image after being adversarial attacked. The results
indicat that utilizing DV2DM to predict whether the noise is
perceivable in the process of undetectable adversarial attack is
effective.

D. Video Super-Resolution Metric

In the field of video research, the video super-resolution is
also an essential task. It aims to convert low-resolution video to
high-resolution while minimizing the distortion caused by the
super-resolution algoithms. To evaluate the video quality after
super-resolution, Mean Squared Error (MSE) and Structural
Similarity (SSIM) are often used as the metrics. However,
both MSE and SSIM are which are evaluated at the pixel
level which is different from the perception process of the
human eye. Thus MSE and SSIM are difficult to exactly and
accurately describe perception quality. Therefore, we adopt
DV2DM as an evaluation metric for the video super-resolution
task to assess the distortion introduced by the super-resolution
process.

We downsample the video with a resolution of 3840x2160
by ffmpeg before restoring it to the original resolution by
an interpolation algorithm. Then we predicte the distortion
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between these two videos using MSE, SSIM and DV2DM
respectively and get the predicted heatmap. The results are
shown as Figure 12.
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Fig. 12. The heatmaps predicted by Mean Squared Error (MSE), Structural
Similarity (SSIM) and DV2DM based on high-resolution frames and low-
resolution frames after super-resolution.

From the Figure 12, it can be seen that MSE, SSIM and
DV2DM keep the consistency in the prediction trend, which
shows the reasonableness of DV2DM as an evaluation metric
for the video super-resolution task. Meanwhile, it can be
noticed that the heatmap predicted by DV2DM is smoother
compared with MSE and SSIM, which is more in line with the
human eye’s perception of video quality. Therefore, DV2DM
can be used as an evaluation metric for the video super-
resolution task to simulate the human eye’s perception of the
video after super-resolution.

VII. CONCLUSION

VDP within the realm of video processing remains an
underexplored domain, presenting multiple challenges, includ-
ing a shortage of datasets and the distinct temporal and
spatial attributes of video data. This research endeavors to
investigate the applicability of VDP to video content, along
with examining the influence of various viewing conditions
such as viewing distance, luminance and frame rate, which are
crucial considerations. We introduce a two-stage model, the
Deep Video Visible Difference Metric (DV2DM), establish a
comprehensive dataset named ViLocVis and provide several
applications based on the DV2DM. Our empirical findings
demonstrate that the ViLocVis dataset accurately embodies the
anticipated VDP experience, while the DV2DM proficiently
captures the essence of video VDP, reliably forecasting percep-
tible disparities across diverse viewing scenarios. Ultimately,
this study addresses the void in video VDP research, offering
both a dataset and a framework that serve as valuable refer-
ences for future explorations in this burgeoning field.
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Fig. 13. Reference images, labels and metrics’ predictions examples under different PPDs.
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Fig. 14. Reference images, labels and metrics’ predictions examples under different luminances.
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Fig. 15. Reference images, labels and metrics’ predictions examples with different FPSs.
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