Qiao SUN

🕈 qiaosun22.github.io 🛛 github.com/qiaosun22 💟 qiaosun22@m.fudan.edu.cn

 $rac{1}{\sim}$ Google Scholar ightharpoonup (86)155-2201-7209 ightharpoonup WeChat

EDUCATION

Fudan UniversityShanghai, China $\bigstar M.Eng.$ in Electrical and Computer Engineering | Major GPA: 3.48/4.0Sep. 2022 - Jun. 2025Highlighted Courses:Computer Vision (A, 4.0), Robotics (A, 4.0), Frontiers in Intelligent Robotics (A, 4.0), Applied Mathematical Methods (B+, 3.3), Data Science (B+, 3.3)Advised by Prof. Shijie Guo, Prof. Nanyang Ye & Dr. Qinying Gu

Tianjin University

 \blacktriangleright B.Eng. (Major) in Civil Engineering | GPA: 3.33/4.0Sep. 2015 - Jun. 2019Highlighted Courses:Advanced Mathematics (93), Selected Explanation of Mathematical Methods (96),Introduction to College Physics (93), Probability Theory and Mathematic Statistics (92), Basic Techniquesof Electrical Engineering (91), Geographic Information System and Engineering (91) \thickapprox B.Mgmt. (Minor) in Financial ManagementSep. 2016 - Jun. 2019

Tianjin, China

Research Interests

1. Robotic Learning, Spatial Intelligence & World Model Techniques towards Embodied AGI

2. Novel Embodied Applications & Enhancements of Foundation Models (e.g. Vision-Language Models & Video Generation Models)

PUBLICATIONS & PREPRINTS (BY YEAR)

2025

[1] Vision-Language Models Meet Video Diffusion: Plug-and-Play World Models for Scalable Embodied Learning

Qiao Sun, Liujia Yang, Wei Tang, Wei Huang, Yongchao Chen, Kaixin Xu, Mingyu Liu, Haoyi Zhu, Jiange Yang, Yating Wang, Xili Dai, Yilun Chen, Tong He, Nanyang Ye, Qinying Gu

[2] TesserAct: Learning 4D Embodied World Models

ICCV 2025 [Paper] [Project] [Website] [Model]

Haoyu Zhen^{*}, **Qiao Sun**^{*}, Hongxin Zhang, Junyan Li, Siyuan Zhou, Yilun Du, Chuang Gan

2024

[3] MiniConGTS: A Near Ultimate Minimalist Contrastive Grid Tagging Scheme for Aspect Sentiment Triplet Extraction

EMNLP (Main Conference) 2024 [Paper] [Code] [PaperWithCode] **Qiao Sun**, Liujia Yang, Minghao Ma, Nanyang Ye, Qinying Gu

[4] Enhancing Nursing and Elderly Care with Large Language Models: An AI-Driven Framework

COLING 2025 [Preprint]

Qiao Sun, Nanyang Ye, Qinying Gu, Jiexin Xie, Shijie Guo

2023

^{*}Equal Contributions

[5] VL-Rotate: Vision Model Modulated by Language Model for Few-Shot OoD Rotated Object Detection

[Preprint]

Weihan Yin, Qiao Sun, Lin Zhu, Liujia Yang, Nanyang Ye

[6] DV2DM: A Learning-based Visible Difference Predictor for Videos

[Preprint]

Qi Fan^{*}, **Qiao Sun**^{*}, Nanyang Ye, Qinying Gu

[7] Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing

[Preprint]

Nanyang Ye^{*}, Qiao Sun^{*}, Yifei Wang, Liujia Yang, Jundong Zhou, Lei Wang, Guang-Zhong Yang, Xinbing Wang, Chenghu Zhou, Wei Ren, Leilei Gu, Huaqiang Wu, Qinying Gu

Research Experience

TesserAct: Learning 4D Embodied World Models [1]

Conducted During Visiting at MIT-IBM Watson AI Lab.

June. 2024 - Present • Proposed a 4D Embodied World Model: Developed an extendable and scalable framework to efficiently predict spatiotemporally consistent high-quality dynamic evolutions of 3D scenes in response to manipulator actions. Expanded pretrained video diffusion models with additional depth and normal output channels, enabling spatially and temporally awared RGB-DN video generation for dynamic scene understanding.

- Created the First High-Quality RGB-DN Dataset: Produced the first-ever RGB-DN dataset with temporally consistent annotations, establishing a foundation for robust training of 4D embodied AI models. Employed novel guidance techniques and harnessed 500+ GPUs for efficient and precise annotation of depth and normal maps.
- Bilateral Reconstruction with RGB-DN Integration: Achieved high-quality, temporally coherent 4D mesh reconstruction by bilaterally integrating depth and normal information, capturing fine-grained spatial and temporal dynamics. Enabled predicting efficient, precise, and explainable 4D representations of the embodied world, tailored for robotic manipulation tasks.
- Policy Learning with 4D-Aware Representations: Developed policy learning frameworks leveraging 4Daware representations, significantly enhancing embodied performances in inverse dynamics modeling, and adaptive planning, outperforming prior 2D and 3D models.

VL-Rotate: Vision-Language Learning for Few-Shot OoD Rotated Object Detection [2]

Conducted During Visiting at JHCCS, SJTU.

• Addressed OoD Rotated Object Detection Challenges: Tackled the limitations of existing vision-language models in few-shot out-of-distribution (OoD) scenarios, focusing on enhancing rotated object detection in dense scenes.

Jan. 2024 - Jun. 2024

- Integrated CLIP-based Text Priors: Designed VL-Rotate, leveraging CLIP's text encoder to align semantic representations across modalities, improving object representations in embedding space.
- Developed Gradient-Guided Regularization: Introduced Masked Feature Heuristics Dropout (MFHD), selectively deactivating classification features, and CLIP-guided Fine-Tuning (CFT) to guide the model's training phase effectively.
- Achieved State-of-the-Art Results: Demonstrated improvements of up to 45.09% in domain adaptation and 5.24% in domain generalization for few-shot OoD scenarios, outperforming prior approaches.

MiniConGTS: A Near Ultimate Minimalist Contrastive Grid Tagging Scheme for Aspect Sentiment Triplet Extraction [3]

Conducted During Internship at Shanghai AI Lab. Oct. 2023 - Feb. 2024 • Rigorously Analyzed Inefficiencies in Existing Methods: Critically analyzed the over-reliance on complex tagging schemes, external semantic augmentations, and intricate classifiers. With rigorous proof, proposed

^{*}Equal Contributions

an internally optimized approach combining a minimalist tagging scheme with token-level contrastive learning.

- *Introduced a Minimalist Tagging Scheme*: Designed a tagging mechanism with the fewest label categories to date, facilitating the learning process and reducing computational complexity without compromising expressiveness.
- Optimized Contextual Representations: Tailored a novel token-level contrastive learning strategy to enhance pretrained contextual embeddings from within the model, free from additional computational overhead or reliance on external semantic augmentation.
- Achieved SotA Efficiency and Overwhelmed GPT-4: Improved computational efficiency by up to 90% compared to prior methods, while achieving State-of-the-Art performance in ASTE tasks. Conducted the first benchmark evaluation of GPT-40 in few-shot learning and Chain-of-Thought scenarios, highlighting the continued relevance of the pretraining-finetuning paradigm.

Enhancing Nursing and Elderly Care with Large Language Models: An AI-Driven Framework [4]

Conducted as Part of Master's Thesis Research, Fudan University. Sep. 2023 - Aug. 2024

- Proposed a Novel Task for AI in Healthcare: Identified a new scenario and task for elderly and disabled care, distinct from traditional clinical settings, addressing the exacerbating societal pressure from aging populations and declining birth rates. Designed a comprehensive LLM-driven framework for real-world solution.
- Specialized Multimodal Dataset and Data Mixing Strategy: Developed a high-fidelity nursing dataset, including text, annotated images, and multi-turn dialogues. Employed a fine-grained data mixing strategy to balance domain-specific specialization with general capabilities.
- Innovated a Multi-Stage Fine-Tuning Pipeline: Conducted Incremental Pre-Training (IPT), Supervised Fine-Tuning (SFT), and Chain-of-Thought (CoT) reasoning to enhance multiple state-of-the-art foundational language models for healthcare-specific tasks.
- Designed the First Nursing Competency Benchmark: Created a novel evaluation metric for foundational nursing capabilities. Experimental results demonstrated significant improvements in baseline models, validating the effectiveness of the proposed pipeline.

DV2DM: A Learning-based Visible Difference Predictor for Videos [5]

Conducted During Visiting at JHCCS, SJTU.

Sep. 2023 - Dec. 2023

- Proposed a New Task for Video VDP: Addressed the challenges of evaluating visual differences in video content, distinct from traditional image quality metrics, by focusing on pixel-wise visible differences and subjective human visual perception in dynamic video contexts.
- *Developed the ViLocVis Dataset*: Curated the first-ever large video VDP dataset, consisting of over 1,000 video pairs with annotated by 10 volunteers under 12 diverse viewing conditions.
- Designed a State-of-the-Art Deep Learning Method: Proposed DV2DM, a novel method based on a customized U-ViT architecture with a Siamese U-shaped network, featuring dual encoding branches and a unified decoding branch for effective spatio-temporal feature extraction. Incorporated environmental factors into the model architecture, improving its adaption to visual differences.
- Demonstrated Versatility Through Applications: Extended DV2DM to real-world scenarios such as contentadaptive watermarking, visually lossless video compression, invisible adversarial attacks, and video superresolution quality metrics.

Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing Leveraging Bayesian Optimization [6]

Conducted During Internship at Shanghai AI Lab.

Apr. 2023 - Dec. 2023

- *Proposed a Synergistic Framework*: Unified perovskite memristor fabrication optimization and robust analog DNN development to address non-idealities in memristor systems. Applied BO to identify ideal materials and fabrication conditions, enhancing energy efficiency and adaptability. Introduced BO-guided noise injection to improve analog DNNs' resilience against memristor imperfections.
- *Validated on Diverse Tasks*: Achieved up to 100-fold performance gains across image classification, autonomous driving, and large vision-language models.

• *Experimental Demonstration*: Verified the approach on a 10×10 optimized memristor crossbar with high classification accuracy and low energy consumption.

INTERNSHIPS

MIT-IBM Watson AI Lab	Jul. 2024 - Present
Supervisor: Prof. Chuang Gan & Dr. Yilun Du	
4D World Model, Embodied AI.	
JHCCS [*] , Shanghai Jiao Tong University	Jul. 2023 - Jul. 2024
Supervisor: Prof. Nanyang Ye	
Natural Language Processing, Computer Vision, Multimodal Learning.	
Shanghai AI Lab	Mar. 2023 - Dec. 2023
Supervisor: Dr. Qinying Gu & Prof. Tianfan Xue	
Memristor-Based Analog Computing and Artificial Intelligence.	
Western Securities, R&D Center	Sep. 2019 - Jul. 2020
Supervisor: Yumeng Zhang	
Data-Driven Financial Engineering, Fund-of-Fund (FoF) Investment Strategies.	

SERVICES

Volunteer at COLING 2025, Abu Dhabi (upcoming)	Jan.	2025
Reviewer for NAACL 2025 and ACL ARR October	Nov.	2024
Volunteer at EMNLP 2024 and its NLP4Science Workshop, Miami	Nov.	2024

Honors & Awards

First-class Academic Scholarship at Fudan University	2024
Outstanding Internship Award at Shanghai AI Lab	2023
First-class Academic Scholarship at Fudan University	2023
Asia and Pacific Mathematical Contest in Modeling, Second Prize	2018
Tianjin College Students Innovation and Entrepreneurship Competition, First prize	2017
Henan High School Students' Chemistry Competition, Second Prize	2015
Robot Competition in the National Computer Production Activity, Third Prize	2014

SKILLS

Programmng:

(Proficient) Python (PyTorch, Pillow, OpenCV-python, SciKit-Learn, Open3D, Transformers, etc.), Shell, SLURM, Git, Blender, MuJoCo, LATEX

(Familiar) C/C++, CUDA, MATLAB, HTML/CSS

Math: Matrix Theory, Kolmogorov Probability Theory, Advanced Statistics, Complex Analysis, Differential Geometry

Computer Science: Parallel Computing, Network, Compiler Theory, Computer Organization and Architecture

^{*}John Hopcroft Center for Computer Science