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Abstract

Rotated object detection (ROD) demands precise localiza-001
tion and angle prediction in dense scenes, yet the full po-002
tential of integrating natural language for improvement re-003
mains largely unexplored, especially in few-shot learning004
for out-of-distribution (OoD) scenarios. In this study, we005
introduce VL-Rotate, an effective vision model that inte-006
grates text-based prior knowledge from CLIP’s text encoder007
to improve object representations in embedding space, and008
selectively deactivate classification features by a gradient-009
guided regularization method. We incorporate two innova-010
tive modules: CLIP-guided Fine-Tuning (CFT) and Masked011
Feature Heuristics Dropout (MFHD), guiding the model’s012
fine-tuning throughout the training phase. Aimed at elevat-013
ing detection accuracy and bolstering few-shot OoD infer-014
ence capabilities, we conducted experiments in two areas015
of OoD research: domain adaptation and domain gener-016
alization. Compared to prior works, VL-Rotate achieves017
state-of-the-art results across all experiments, reaching an018
improvement up to 45.09% and 5.24% respectively on these019
two tasks, demonstrating the benefits of natural language020
guidance and text-image alignment. The experimental re-021
sults validate the model’s effectiveness and potential in ad-022
vancing ROD.023

1. Introduction024

Rotated Object Detection (ROD) is a rapidly advancing area025
in computer vision, with recent innovations [32, 56, 57, 61]026
driving significant progress in applications like object de-027
tection in remote-sensing images. Given that objects in028
aerial images are often densely packed, elongated, and ar-029
bitrarily oriented, oriented bounding boxes (OBB) have be-030
come the preferred method over traditional horizontal boxes031
for object localization, with many well-designed detectors032
showing promising results on challenging datasets.033

Current research predominantly emphasizes the refine-034
ment of network architectures, feature extraction tech-035

Figure 1. An overview of our work. VL-Rotate aims to learn from
a k-shot source domain and generalize to the target domain with
unseen data. Our approach integrates text-based prior knowledge
to modulate object features and mutes classification features with
Masked Feature Heuristics Dropout (MFHD) to broaden feature
participation, stabilize predictions, and improve generalization.

niques, and loss functions under the assumption of indepen- 036
dent and identically distributed (i.i.d.) data to elevate detec- 037
tion accuracy. However, ROD faces challenges when deal- 038
ing with out-of-distribution (OoD) data in aerial images. 039
The complexity of remote sensing environments—affected 040
by dynamic weather, cloud cover, varying illumination, 041
and seasonal changes—introduces uncertainty and incom- 042
plete information. Besides, technical disparities across data 043
sources create inconsistencies in image resolution, noise, 044
and color spaces, further complicating cross-domain gen- 045
eralization. The diversity in object states across geographic 046
locations and movement patterns exacerbates these difficul- 047
ties. Therefore, it is crucial for ROD models to address OoD 048
conditions to maintain robust performance. 049

Remote sensing images often feature thousands of 050
densely packed objects, such as cars or buildings, from a 051
top-down perspective, which, coupled with complex OoD 052
conditions, largely increases labeling costs. Privacy and na- 053
tional security concerns further limit the availability of pub- 054
lic training data. Class imbalance adds to the challenge, 055
particularly in detecting rare targets. Few-shot setting (FS) 056
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could emerge as a viable solution by refining features from057
limited samples, allowing models to quickly adapt to new058
classes and improving resource efficiency under OoD cases.059

We observe that remote sensing images provide essential060
top-down visual information, while text offers semantic and061
abstract context, making cross-modal learning—especially062
the integration of vision and language—promising for ad-063
vancing ROD. Natural language descriptions of object at-064
tributes, shapes, or contexts are crucial for understand-065
ing categories and locations, improving model generaliza-066
tion under OoD and few-shot scenarios. While large-scale067
image-text pairs have been used for robust feature represen-068
tation in pre-trained models, the unique challenges of ROD,069
such as complex backgrounds and rotated objects limit the070
effective use of textual information for detection. To date,071
no proposed method has fully harnessed the potential of lan-072
guage to improve ROD performance.073

To address these limitations, we propose a novel ap-074
proach named Vision Model Modulated by Language075
Knowledge for Few-Shot Rotated Object Detection (VL-076
Rotate). As shown in Fig. 1, our method leverages language077
representations within a few-shot setting to enhance the pre-078
diction of rotated objects in OoD scenarios. Our main con-079
tributions are as follows:080

• We propose a unique approach that integrates text-based081
prior knowledge to modulate object feature represen-082
tations during fine-tuning, empowering the detector to083
achieve adequate generalization capabilities under unseen084
and complex data conditions.085

• We propose a novel dropout method that leverages gra-086
dients and GSNR to mute classification features, encour-087
aging broader feature participation to achieve more stable088
predictions and enhance generalization on unseen data.089

• We conducted extensive experiments under few-shot set-090
tings on domain adaptation & generalization tasks, where091
VL-Rotate outperformed the baseline with up to 6.43%092
and 2.21% mAP gains on unseen data. To our knowledge,093
VL-Rotate is the pioneering work to integrate vision-094
language models for few-shot OoD ROD, and it is ver-095
satile, enhancing both classification and regression across096
single-stage, refine-stage, and two-stage detectors.097

2. Related Work098

In this section, we will review related works. The complete099
related work section can be found in the Appendix due to100
space limitations.101

2.1. Rotated Object Detection102

Rotated object detection is a challenging task involving103
dense object prediction and rotated bounding box predic-104
tion. Novel methods have been proposed to address this105
problem, falling into three main categories: two-stage de-106
tector [7, 15, 52], refine-stage detector [16, 20, 48, 55, 58,107

72] and single-stage detector [32, 56, 61, 65]. In the con- 108
text of refine-stage detectors, Oriented RepPoints [48] intro- 109
duced an adaptive points representation to capture the geo- 110
metric information of objects and proposed a corresponding 111
quality assessment for adaptive points learning. Recently, 112
there has been a growing trend of exploring single-stage de- 113
tectors. Noteworthy contributions in this area include PSC 114
[61] provides a unified framework to resolve various pe- 115
riodic fuzzy problems and RTMDet [32], offering an effi- 116
cient real-time detection solution with large-kernel depth- 117
wise convolutions. 118

2.2. Out-of-Distribution Generalization 119

In recent years, various OoD generalization methods have 120
been proposed to address distribution shifts. These meth- 121
ods can be categorized as follows [66]: 122
(1) Domain generalization-based method These methods 123
train models on source domains to achieve generalization 124
on unseen target domains. Common approaches include do- 125
main adversarial learning [9, 60], transfer learning [3, 49], 126
and meta-learning [64]. 127
(2) Invariant representation learning Exemplified by In- 128
variant Risk Minimization (IRM) [2], this approach ex- 129
plores causal relationships in data across different environ- 130
ments based on causal invariant features. Recently, Pareto 131
Invariant Risk Minimization [4] and parse Invariant Risk 132
Minimization [70] have been proposed to further investi- 133
gate the generalization ability of IRM . 134
(3) Stable learning This method combines causal infer- 135
ence with machine learning to tackle the OoD generaliza- 136
tion problem from a different perspective. Stable learn- 137
ing methods include data augmentation [47] and Bayesian 138
methods [22], etc. 139

2.3. Vision-Language Pre-trained Models 140

Recent advancements in large-scale vision-language pre- 141
training have notably enhanced downstream task perfor- 142
mance. Contrastive Language-Image Pretraining (CLIP) 143
[35] stands out by effectively learning vision-language rep- 144
resentations. CLIP’s framework has inspired developments 145
in vison-language learning, with models such as CoOp [69], 146
CoCoOp [68], and CLIP-Adapter [10]. CLIP has also been 147
adapted for various tasks, including DetCLIP [59] for ob- 148
ject detection, DenseCLIP [36] for pixel-text matching, and 149
CLIP-ReID [25] for image re-identification, demonstrating 150
its versatility in fine-tuning applications. 151

3. Method 152

Traditional ROD methods rely on pre-trained weights and 153
require substantial labeled data for downstream fine-tuning. 154
In scenarios with limited samples, models risk overfitting, 155
failing to capture the diversity of features and only mem- 156
orizing specific instances without generalizing to new ori- 157
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Figure 2. The overall framework of the proposed VL-Rotate. RetinaNet is shown as the baseline, encompassing an Image Encoder and task-
specific heads. VL-Rotate includes Masked Feature Heuristics Dropout (MFHD) and CLIP-Guided Fine-Tuning (CFT). During training,
MFHD utilizes gradient and GSNR to mute the feature representations in fc, encouraging the network to make predictions through more
alternative features. CFT leverages text features ft of CLIP to modulate fc and fr with text-classification heuristic alignment score and the
best matching text-region fine-grained similarity, guiding the model to learn category-related textual descriptions. Final category scores
are calculated by aggregating the alignment scores and classification scores in inference.

entations. Moreover, significant distribution shifts between158
the few-shot training and test sets can lead to biased predic-159
tions due to spurious correlations in unseen domains.160

To address these challenges, we propose VL-Rotate,161
which leverages language-guided text representations to162
modulate object-invariant features and iteratively deactivate163
features, encouraging all features to participate in making164
more stable predictions. Our approach also enables the effi-165
cient guidance of classification and regression features, al-166
lowing for rapid, plug-and-play deployment across various167
single-stage, two-stage, and refine-stage detectors. We em-168
ployed the widely-used single-stage detector RetinaNet [28]169
as an example framework to illustrate how we build our170
method on top of it. The RetinaNet pipeline, depicted in171
Fig. 2, consists of a backbone network, a Feature Pyramid172
Network (FPN) [27], and task-specific heads for classifica-173
tion and regression.174

3.1. CLIP-Guided Fine-Tuning175

The large-scale vision-language model CLIP was designed176
to describe objects using semantic and abstract text con-177
cepts, enhancing object understanding. However, adapt-178
ing CLIP from upstream classification to downstream ROD179
presents challenges, as ROD requires not only classification180
but also precise region and angle predictions, complicating181
the fusion of visual and textual information.182

To address this issue, we proposed a CLIP-guided Fine-183
Tuning (CFT) method that leverages text information of184
CLIP to modulate the feature representations, enhancing the185
generalization ability under unseen data conditions in ROD.186
Given a k-shot image set Xtr = {xi} ∈ Ds, i ∈ [1, k] from187
source domain Ds, as the training set, and a category set188
Yc = yci, i ∈ [1,m] containing category text, our goal is189
to fine-tune the model for effective generalization in the un-190

seen target domain Dt. 191

3.1.1. Text-Classification Heuristic Alignment 192

We first introduce a Text-Category Heuristic Alignment 193
(TCHA) technique that uses classical text tokens to guide 194
the model in learning from imprecise textual descriptions. 195
As shown in Fig. 2, the single-stage detector extracts im- 196
age features using a backbone I(·) and a FPN, producing 197
multi-scale output features ffpn = FPN(I(x)). The clas- 198
sification head then applies a series of convolutional layers 199
ConvC1(·) to derive classification features fc ∈ Rb×c×h×w 200
from ffpn, where b, c, h, and w represent the batch size, 201
channels, height, and width of the feature map. These fea- 202
tures are further processed through ConvC2(·) to output the 203
classification results for each anchor or point. 204

Following CLIP’s framework, we design a text descrip- 205
tion Pc as “a photo of a yci” and feed it into the CLIP text 206
encoder T (·) to generate text features ft ∈ Rm×ct , where 207
ct is the dimension. We modify ConvC1(·) to match the 208
output channel dimension to ct, enabling fc to facilitate 209
alignment learning and classification. By leveraging pre- 210
trained knowledge from CLIP’s text encoder, fc is heuris- 211
tically fine-tuned with text guidance, enhancing robustness 212
in OoD inference. 213

During training, considering that ft and fc reside in dif- 214
ferent embedding spaces, we freeze the text encoder and 215
fine-tune the detector. To guide alignment learning, we in- 216
troduce an alignment loss, Lalign which is computed by tak- 217
ing the inner product between ft and fc, yielding alignment 218
scores salign = fc · fT

t for classification, where fc is re- 219
shaped to Rb×(h×w)×ct . The original classification head 220
and the alignment learning component are fine-tuned in- 221
dependently to avoid interference. Lalign shares the same 222
form as the classification loss Lcls used in RetinaNet. 223
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During inference, the prediction results of each cate-224
gories scls from ConvC2(·) and the alignment scores salign225
are combined to form the final classification result s:226

s = λscls + (1− λ)salign (1)227

where λ = 0.5 balances the two components, merging the228
model’s intrinsic classification ability with text-based prior229
knowledge for more stable predictions.230

3.1.2. Text-Region Fine-grained Similarity231

Despite the intuitive notion that textual information is ag-232
nostic to regions, it encapsulates descriptive features rele-233
vant to various categories, aiding the model in distinguish-234
ing between foreground and background. Motivated by235
this insight, we introduce a novel Text-Region Fine-grained236
Similarity (TRFS) technique in the CFT framework.237

TRFS promotes the learning of fine-grained text-region238
correspondences, reinforcing each other during training,239
and improving the model’s ability to understand the nu-240
anced relationships between textual descriptions and visual241
regions.242

In the regression head, the initial convolutional layer,243
ConvR1(·), extracts region features fr ∈ Rb×c×h×w from244
ffpn. Subsequently, ConvR2(·) processes fr to generate245
the final regression predictions. To facilitate this transition,246
we modify the output channel dimension of ConvR1(·) to247
ct, reshaping the features to fr ∈ Rb×(h×w)×ct , where248
n = h × w denotes the number of regions. Parallel to249
the classification branch, we employ a text prompt Pr = “a250
photo of a yci” to extract region-related text features ft from251
the CLIP text encoder.252

The text-region similarity between the text feature fti for253
the i-th category and all region features fr is denoted as:254

Ω(fr, fti)i =
1

N

N∑
j=1

frjf
T
ti (2)255

The total text-region similarity Ω(fr, ft) is calculated by256
summing these individual similarities in Eq. (2):257

Ω(fr, fti) =
1

MN

M∑
i=1

N∑
j=1

frjf
T
ti (3)258

This measure reflects the similarity between the image x259
and the category set YC . However, since it includes all re-260
gion features, it may incorporate background regions unre-261
lated to the text, especially in remote-sensing images where262
objects are typically small, introducing noise into the sim-263
ilarity measure. To mitigate it, we select the region fea-264
ture f̂ri in fr that maximizes f̂rif

T
ti for the text feature265

fti . This leads to the optimal-matching text-region simi-266
larity Ω̄(fr, ft):267

Ω̄(fr, ft) =
1

M

M∑
i=1

f̂rjf
T
ti (4)268

Clearly, the total text-region similarity Ω(fr, ft) is max- 269
imized when considering only the most compatible region 270
feature, such that Ω(fr, ft) ≤ Ω̄(fr, ft). 271

However, this optimal-matching approach assumes a 272
one-to-one correspondence between text and region fea- 273
tures. In aerial images, where objects are densely packed, 274
a one-to-many relationship often exists, with multiple ob- 275
jects of the same category appearing in the image. Thus, 276
the optimal-matching similarity may not fully capture the 277
text-region relationship, particularly in ROD where balanc- 278
ing the desired similarity with this one-to-many relationship 279
is crucial. To address this, we introduce a softmax-weighted 280
sum method to encode the probability distribution of text 281
features across all region features. For the text features fti 282
of the i-th category and region features frj of the j-th re- 283
gion, the softmax probability for selecting frjf

T
ti is given 284

by: 285

softmax(frj , f
T
ti ) =

exp(frjf
T
ti /γ)∑

r exp(frfT
ti /γ)

(5) 286

where γ is the hyperparameter controlling the sharpness of 287
the softmax probability distribution. 288

The softmax probability is then incorporated into Eq. (3) 289
to derive the final matching text-region similarity: 290

Ω̄(fr, ft) =
1

M

M∑
i=1

N∑
j=1

softmax(frj , f
T
ti )frjf

T
ti (6) 291

This refined similarity accounts for all region features, ap- 292
propriately weighting each and emphasizing those most 293
aligned with the text. The corresponding text-region sim- 294
ilarity loss is expressed as Lsim: 295

Lsim = − 1

B
log

exp(Ω̄(fr, fti)/γ)∑
r exp(Ω̄(fr, fti)/γ)

(7) 296

Here, B represents the batch size in a single iteration. This 297
loss aids in training the model to learn a more refined text- 298
region similarity to improve robustness to distributional 299
shifts in OoD ROD. During training, the regression head 300
and the TRFS branch are fine-tuned independently, while 301
the TRFS branch is discarded during inference. The pri- 302
mary goal is to leverage text priors during training to en- 303
hance the region features’ ability to distinguish foreground 304
from background, aligning with the regression head’s focus 305
on localization without assuming classification responsibil- 306
ities. 307

3.1.3. Overall Training Loss 308

Following RetinaNet, the total loss is calculated as: 309

L = ω1Lcls + ω2Lreg + ω3Lalign + ω4Lsim (8) 310

where Lcls, Lreg , Lalign, Lsim represent the classification 311
loss, regression loss, alignment loss, and refined text-region 312
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similarity matching loss. We use focal loss [28] for Lcls,313
Lalign, and Lsim, and GIoU loss [38] for Lreg. The weights314
ω1, ω2, ω3 and ω4 are empirically set to 1:1:2:2.315

3.2. Masked Feature Heuristics Dropout316

Generalizing to unseen target domains poses a significant317
challenge, especially in few-shot cases where the model’s318
performance can suffer due to its tendency to memorize319
specific features from limited data. Traditional regulariza-320
tion techniques like Dropout [40], which work by randomly321
deactivating network parameters, are often employed to ad-322
dress this issue. However, in few-shot settings, this random323
approach can inadvertently mute important features, limit-324
ing the model’s ability to learn effectively.325

To address this, inspired by [21, 33], we develop an ad-326
vanced regularization method that strategically deactivates327
features based on gradient information rather than random-328
ness. This approach, called Masked Feature Heuristics329
Dropout (MFHD), uses high gradients (i.e. gradients of pa-330
rameters w.r.t the loss function) and high Gradient Signal-331
to-Noise Ratio (GSNR) [29] to create a mask that prevents332
the model from over-relying on “local optimal predictions”333
tied to the source domain, thereby enhancing generalization334
on unseen data. This approach can be likened to decision-335
making in a group: while individuals tend to rely on a336
leader’s past correct decisions, unforeseen situations may337
increase the leader’s likelihood of error. In such cases, col-338
lective input from all members enhances the group’s re-339
silience.340

Unlike standard dropout methods that require extensive341
tuning and increased computational load, MFHD is applied342
specifically on the classification features fc (see Fig. 2).343
This is because classification tasks are particularly vulner-344
able to memorizing specific instances instead of learning345
generalized features, while regression tasks require high346
precision, where even small errors can severely impact per-347
formance. This targeted approach helps maintain stability348
in the regression branch and ensures accurate predictions.349

MFHD mutes the channels in fc to obtain f̃c = M̃ ⊙ fc,350
where “⊙” denotes element-wise product. M̃ is the mask to351
determine which feature in fc should be muted, given by:352

M̃ = Mg ⊙Mr (9)353

Given the gradients gc = ∂Lcls(fc,yc)
∂θc

of the classifica-354
tion loss Lcls with respect to the parameters θc of the top355
layers of ConvC1(·), where yc is the classification label, a356
first mask Mg = {mg(i)} by zeroing out the top p % of357
the most significant elements in gc is calculated for the i-th358
element: mg(i) set to 0 if gc(i) ≥ Gp otherwise to 1, where359
Gp represents the threshold for the top p %. Next, MFHD360
computes GSNR for the parameters θc, defined as361

rc =
E2
(x,yc)∼D(gc)

Var(x,yc)∼D(gc)
(10)362

A second mask Mr = {mr(i)} is generated based on rc, 363
using a threshold Rp of the top p %. For the i-th element, 364
mr(i) set to 0 if rc(i) ≥ Rp otherwise to 1. Empirically, 365
we set p to 30%. 366

Additionally, a well-designed dropout schedule is criti- 367
cal. Applying MFHD throughout the entire training phase 368
could interfere with the model’s ability to learn generaliz- 369
able features. Therefore, MFHD is activated after the first 370
half of the training epochs, allowing the model to focus on 371
learning general features early and on generalization capa- 372
bilities later to avoid overfitting. 373

4. Experiment 374

4.1. Experiment Settings 375

Adhering to the few-shot settings of CoOp [67] and the 376
ROD settings, we focus on evaluating the fine-tuning per- 377
formance of the methods in few-shot OoD ROD scenar- 378
ios. The experiments include two parts: domain adaptation 379
(DA) task and domain generalization (DG) task. 380

4.1.1. Domain Adaptation 381

We focus on evaluating performance under domain shifts. 382
While datasets like DOTA-C [17] and DOTA-Cloudy [17] 383
contain various domain shifts are available, the high exper- 384
imental cost of evaluating these datasets—due to the need 385
for individual assessments of different corruption types on 386
servers—remains a significant challenge. To address this, 387
we propose using alternative aerial remote sensing image 388
datasets: DIOR-C [31] and DIOR-Cloudy [31]. DIOR-C 389
includes 19 different types of corruptions from ImageNet- 390
C [19] with a severity level of 3. DIOR-Cloudy is con- 391
structed using publicly available cloud images from DOTA- 392
Cloudy through image synthesis. For our experiments, we 393
use the original training set of DIOR [24] with 20 classes 394
as the source data and randomly select 64 images to create 395
a 64-shot training set. The test sets of DIOR-C and DIOR- 396
Cloudy then serve as the unseen target data for evaluation. 397

4.1.2. Domain Generalization 398

We use the original DOTA [51] training set as source data, 399
randomly selecting 16 images to create a 16-shot training 400
set. The model’s performance is evaluated on the DIOR test 401
set to gauge its ability to transfer knowledge between differ- 402
ent data distributions. We also use the DOTA validation set 403
as the source test data. Following established protocols in 404
domain-generalized object detection [26, 45, 50], we focus 405
on the shared object categories between DOTA and DIOR, 406
which include 10 classes: airplane, baseball field, bridge, 407
ground track field, vehicle, ship, tennis court, basketball 408
court, storage tank, and harbor. 409

4.1.3. Competitors 410

To conduct comprehensive experiments and provide valu- 411
able insights, we explored various methods in few-shot 412
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Method DIOR-Cloudy DIOR-C OoD ID
Cloudy Ga Sh Im Sp De Gl Mo Zo Ga Sn Fr Fo Br Sp Co El Pi JP Sa mAP mAP

C
F CD-ViTO [8] 21.15 19.26 18.39 19.68 19.47 20.07 16.17 18.97 6.07 21.06 18.53 13.62 21.19 24.74 21.62 21.03 20.88 23.62 23.79 25.79 19.76 26.08

Distill-FSOD [53] 28.13 18.23 18.85 20.07 22.18 27.68 17.68 23.79 10.73 29.56 17.50 18.63 31.82 35.41 26.48 29.28 30.39 30.74 28.31 37.57 25.15 38.52

D
A

D
G IRG-SFDA [46] 15.30 4.12 3.82 5.36 7.34 14.58 12.39 13.01 6.54 16.29 7.52 8.72 17.67 19.89 13.77 15.87 18.48 17.85 18.29 20.76 12.88 21.77

SFOD [30] 21.09 12.64 11.86 12.45 15.41 19.50 15.64 19.08 12.17 21.57 13.06 15.41 25.32 26.73 16.18 24.25 24.68 22.39 23.13 27.34 19.00 27.76
OA-DG [23] 28.26 21.88 21.23 21.60 23.72 25.51 15.57 23.24 12.38 27.24 17.00 20.02 30.12 33.60 23.63 27.03 29.73 28.50 30.59 35.81 24.83 36.56

two-stage:
Faster RCNN OBB [11] 28.67 12.86 12.49 13.08 15.13 22.17 18.69 22.24 12.99 23.94 15.58 18.12 26.76 35.17 22.50 22.68 31.83 30.41 32.21 36.97 22.72 38.79

Oriented RCNN [52] 31.09 16.23 15.56 15.50 18.68 22.92 19.28 23.98 13.65 24.14 15.70 19.83 28.21 38.60 24.26 25.19 34.80 33.42 36.13 41.06 24.91 42.83
RoI Transformer [7] 33.34 15.36 14.16 15.32 17.86 23.17 21.61 25.67 16.12 24.48 16.68 20.62 29.28 40.08 24.44 24.61 37.99 35.98 38.01 43.28 25.90 44.94

ReDet [15] 36.73 22.21 20.77 20.99 23.52 28.51 25.37 28.81 16.01 30.92 20.60 24.97 35.85 42.04 30.99 34.31 37.45 37.37 39.31 45.04 30.09 47.12
FRCNN OBB+VL-Rotate 31.45 14.67 13.76 15.13 18.19 22.70 19.78 23.73 14.75 24.68 16.86 19.17 27.86 36.09 23.75 23.57 33.44 32.38 35.34 39.38 24.33 41.85

+2.78 +1.81 +1.27 +2.05 +3.06 +0.53 +1.09 +1.49 +1.76 +0.74 +1.28 +1.05 +1.10 +0.92 +1.25 +0.89 +1.61 +1.97 +3.13 +2.41 +1.61 +3.06
ReDet+VL-Rotate 38.94 21.58 19.17 20.89 22.97 31.21 25.77 30.06 17.39 32.50 24.22 26.15 38.93 42.54 32.65 36.95 38.66 38.07 40.19 46.25 31.25 47.78

+2.21 -0.63 -1.60 -0.10 -0.55 +2.70 +0.40 +1.25 +1.38 +1.58 +3.62 +1.18 +3.08 +0.50 +1.66 +2.64 +1.21 +0.70 +0.88 +1.21 +1.17 +0.66
single-stage:

RetinaNet OBB [28] 17.02 9.00 8.99 9.17 10.00 12.50 12.75 12.66 8.02 14.17 11.72 12.67 15.11 21.48 15.83 13.57 20.15 18.25 19.76 22.32 14.26 23.22
H2RBox [56] 18.07 7.67 6.26 8.92 9.42 14.83 14.14 16.06 9.54 16.17 10.60 9.61 15.91 23.07 13.39 14.00 21.10 19.52 20.66 23.41 14.62 25.17

RTMDet-l [32] 27.13 16.59 15.84 16.61 19.23 20.36 19.67 22.27 11.58 20.85 16.84 18.36 22.31 30.57 25.38 22.84 29.60 31.01 32.79 36.04 22.79 37.09
FCOS OBB-PSC [61] 30.49 14.51 13.43 15.20 16.90 22.56 20.30 22.64 12.18 24.49 17.33 19.48 26.64 35.70 24.18 23.38 32.09 32.30 34.26 38.72 23.84 39.97

FCOS OBB [44] 31.79 13.88 14.06 14.81 16.77 23.86 19.24 23.88 13.66 25.78 18.56 20.92 30.68 35.99 24.37 27.50 33.06 32.30 34.70 39.70 24.78 41.71
Rotated ATSS [65] 32.48 16.33 14.83 16.79 19.49 25.42 21.00 24.98 13.65 27.21 17.56 19.71 28.99 38.38 24.60 26.28 33.67 35.57 36.72 41.64 25.77 43.52

RetinaNet OBB+VL-Rotate 26.44 12.68 11.85 11.34 13.72 19.58 16.84 20.21 11.29 20.57 13.01 17.34 24.17 32.45 19.85 20.77 29.51 28.02 29.99 34.07 20.69 35.34
+9.42 +3.68 +2.86 +2.17 +3.72 +7.08 +4.09 +7.55 +3.27 +6.40 +1.29 +4.67 +9.06 +10.97 +4.02 +7.20 +9.36 +9.77 +10.23 +11.75 +6.43 +12.12

RTMDet-l+VL-Rotate 34.37 19.12 18.17 18.94 22.38 21.29 17.68 24.17 10.30 22.73 20.98 22.94 33.01 39.83 29.58 29.12 29.97 31.77 33.72 42.42 26.12 44.64
+7.24 +2.53 +2.33 +2.33 +3.15 +0.93 -1.99 +1.90 -1.28 +1.88 +4.14 +4.58 +10.7 +9.26 +4.20 +6.28 +0.37 +0.76 +0.93 +6.38 +3.33 +7.55

refine-stage:
S2A-Net [16] 27.11 14.31 12.81 14.04 16.01 19.45 16.00 20.11 11.67 20.13 13.44 16.53 24.73 32.08 22.52 19.57 29.02 27.32 30.33 34.36 21.08 36.28
R3Det [55] 29.97 16.89 15.02 16.16 17.97 21.61 19.15 22.11 13.93 23.34 16.66 20.14 27.28 34.37 24.52 22.93 32.94 31.88 34.44 36.55 23.89 38.05

RepPoints OBB [58] 30.91 11.70 11.67 11.39 14.66 21.48 21.92 23.48 14.26 23.34 17.91 19.76 26.83 34.36 27.19 24.25 32.61 31.74 33.90 36.74 23.51 38.22
SASM [20] 36.19 13.03 11.63 12.19 15.21 24.25 24.50 26.99 16.96 26.29 20.82 23.51 32.53 42.09 29.96 27.21 39.68 36.64 41.51 45.62 27.34 47.86
CFA [72] 37.77 18.39 17.45 18.30 21.28 26.52 23.20 27.51 16.88 27.87 22.18 23.16 34.98 43.95 30.54 32.95 39.83 38.72 43.07 47.38 29.60 49.07

Oriented RepPoints [48] 37.71 20.31 19.36 19.89 23.59 28.01 25.66 27.19 15.79 29.95 19.87 24.16 34.60 43.15 31.22 29.89 40.46 39.18 43.05 47.71 30.04 49.38
RepPoints OBB+VL-Rotate 31.43 12.40 11.66 11.86 15.47 21.86 21.65 23.31 14.76 24.05 18.44 20.30 26.67 35.64 26.86 25.02 34.84 32.90 35.22 39.52 24.19 40.53

+0.52 +0.70 -0.01 +0.47 +0.81 +0.38 -0.27 -0.17 +0.50 +0.71 +0.53 +0.54 -0.16 +1.28 -0.33 +0.77 +2.23 +1.16 +1.32 +2.78 +0.69 +2.31
SASM+VL-Rotate 38.67 12.38 11.35 11.37 15.27 28.06 25.88 29.28 17.68 30.21 20.98 24.09 34.90 44.03 30.97 31.73 43.33 40.06 44.31 48.14 29.13 50.81

+2.48 -0.65 -0.28 -0.82 +0.06 +3.81 +1.38 +2.29 +0.72 +3.92 +0.16 +0.58 +2.37 +1.94 +1.01 +4.52 +3.65 +3.42 +2.80 +2.52 +1.79 +2.95
ORP+VL-Rotate 39.26 21.01 19.81 20.61 24.54 25.45 23.18 25.32 16.14 27.52 21.25 25.10 36.23 44.96 30.93 30.63 40.41 39.62 44.06 49.46 30.27 51.37

Ty
pi

ca
lR

O
D

+1.55 +0.70 +0.45 +0.72 +0.95 -2.56 -2.48 -1.87 +0.35 -2.43 +1.38 +0.94 +1.63 +1.81 -0.29 +0.74 -0.05 +0.44 +1.01 +1.75 +1.99 +0.24

Table 1. Result comparison between the proposed VL-Rotate and CD-FSOD detectors (CF), DA & DG detectors (DADG) and typical ROD
detectors in domain adaptation task. The corruptions in DIOR-C can be categorized into four groups: Noise (Gaussian, Shot, Impulse,
Speckle), Blur (Defocus, Glass, Motion, Zoom, Gaussian), Weather (Snow, Frost, Fog, Brightness, Spatter), and Digital (Contrast, Elastic
transform, Pixelate, JPEG compression, Saturate). For OoD evaluation, models are fine-tuned on 64-shot samples from the source domain
DIOR and then directly tested on DIOR-Cloudy and DIOR-C. We report the average mAP (OoD mAP, %) on both datasets. ID evaluation
(ID mAP, %) uses the same training protocol but test on DIOR. FRCNN denotes Faster RCNN and ORP denotes Oriented RepPoints.

OoD RoD scenarios.413

Typical ROD Methods: We categorized ROD methods414
into single-stage detectors, refine-stage detectors, and two-415
stage detectors, examining their performance in tackling the416
significant challenges posed by few-shot OoD scenarios.417

CD-FSOD Methods: Distill-FSOD [53] and CD-ViTO [8],418
two state-of-the-art Cross-Domain Few-Shot Object De-419
tection (CD-FSOD) approaches, are introduced to explore420
whether they can address DG and DA tasks under ROD.421

DA&DG Object Detection Methods: SFOD [30], IRG-422
SFDA [46], and OA-DG [23] were utilized to evaluate their423
few-shot performance under ROD.424

4.1.4. Experiment Details425

Our experiments were conducted on MMRotate [71]. For426
fair evaluation, all methods in ROD use ResNet-50 [18] pre-427
trained on ImageNet as the backbone and follow the default428
setup on MMRotate. CD-FSOD and DA & DG methods are429
followed their default settings. VL-Rotate is trained with 3x430
schedule, 0.005 learning rate, 0.9 momentum, and 0.0001431
weight decay. Random flipping is employed to avoid over-432
fitting without any additional tricks. Further details are433
provided in Appendix.434

4.2. Main Results 435

4.2.1. Domain Adaptation 436

We deploy VL-Rotate in some of the ROD methods and 437
compare with all competitors on DA tasks, as shown in 438
Tab. 1. Our method consistently outperforms others, with 439
the most notable improvement observed with RetinaNet. 440
Specifically, VL-Rotate achieves average OoD mAP gains 441
of 1.61% with Faster RCNN, 1.17% with ReDet, 6.43% 442
with RetinaNet, 3.33% with RTMDet, 0.69% with Rep- 443
Points, 1.79% with SASM and 1.99% with Oriented Rep- 444
Points. Among all the tested methods—whether CD-FSOD, 445
DG & DA, or typical ROD method—the ReDet-based 446
method of VL-Rotate achieves the highest performance, 447
with 31.25% mAP on the target domain, setting a new state- 448
of-the-art. A qualitative comparison of VL-Rotate and the 449
baseline RTMDet is shown in Fig. 3. 450

4.2.2. Domain Generalization 451

Tab. 2 presents the DG results, where our method consis- 452
tently improves the selected baselines. Notably, it increases 453
mAP by 2.21% for RetinaNet and 1.02% for RTMDet-l on 454
the DIOR test set. RTMDet achieves the best OoD mAP 455
among all baselines, and with VL-Rotate, it further im- 456
proves, reaching a new SOTA mAP of 56.24% on the source 457
domain and 51.89% on the target domain. Note that for 458
SFOD, a method used for DA tasks, training requires test 459
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Figure 3. Qualitative comparisons of the inference results between proposed VL-Rotate and the baseline model RTMDet on DIOR-Cloudy.

Method ID mAP OoD mAP
CD-ViTO[8] 13.64 13.00

C
F

Distill-FSOD[53] 31.96 28.29
SFOD[30] - -

IRG-SFDA[46] 23.20 19.43

D
A

D
G

OA-DG[23] 46.40 32.31
two-stage:

Faster RCNN OBB [11] 48.21 44.64
Oriented RCNN [52] 51.69 45.36
RoI Transformer [7] 54.08 47.83

ReDet [15] 54.23 48.39
refine-stage:

Reppoints OBB [58] 50.08 46.05
R3Det [55] 50.80 45.19

S2A-Net [16] 51.07 47.12
CFA [72] 51.82 47.01

SASM [20] 53.89 50.02
Oriented Reppoints [48] 54.96 49.00

single-stage:
H2RBox [56] 36.99 37.34

RetinaNet OBB [28] 44.10 42.19
FCOS OBB-PSC [61] 50.11 44.40

FCOS OBB [44] 50.84 47.33
Rotated ATSS [65] 51.70 46.39

RTMDet-l [32] 54.15 50.87
RetinaNet OBB+VL-Rotate 46.17 44.40

+2.07 +2.21
RTMDet-l+VL-Rotate 56.24 51.89

Ty
pi

ca
lR

O
D

+2.09 +1.02

Table 2. Result comparison between the proposed VL-Rotate and
competitors on domain generalization task. We report the ID mAP
on DOTA validation set and the OoD mAP on DIOR test set.

sets with corruption as the unseen target domain, which460
leads to the lack of a reference. The source domain results461
are derived from the DOTA validation set for reference only.462

4.3. Ablation Study463

We conduct a series of ablation experiments to evaluate the464
effectiveness of VL-Rotate and exclude potential confound-465
ing factors. Unless otherwise specified, the experimental466
settings align with those described in the experiment details.467

Components
ID mAP Impv OoD mAP ImpvCFT MFHD

TCHA ScoreM TRFS Grad GSNR
23.22 14.26

✓ 30.64 +7.42 17.44 +3.18
✓ ✓ 32.56 +9.34 18.92 +4.66
✓ ✓ ✓ 32.74 +9.52 19.49 +5.23
✓ ✓ ✓ ✓ 15.32 -7.9 10.11 -4.15
✓ ✓ ✓ ✓ 33.84 +10.62 19.99 +5.73
✓ ✓ ✓ ✓ ✓ 35.34 +12.12 20.69 +6.43

Table 3. Ablation study results of each component based on Reti-
naNet on domain adaptation task. “ScoreM” denotes the score
merge in CFT during inference. “Impv” denotes the overall im-
provement compared to RetinaNet.

Method Language ID mAP Impv OoD mAP Impv
baseline - 23.22 14.26

VL-Rotate W2V[34] 12.37 -10.85 8.19 -6.07
VL-Rotate BERT[6] 30.20 +6.98 18.01 +3.75
VL-Rotate CLIP-Text[35] 35.34 +12.12 20.69 +6.43
Method CLIP Enc. Type ID mAP Impv OoD mAP Impv
baseline - 23.22 14.26

VL-Rotate EVA02-CLIP[42] 28.93 +5.71 17.95 +3.69
VL-Rotate Long-CLIP[63] 33.61 +10.39 19.49 +5.23
VL-Rotate SigLIP[62] 34.14 +10.92 20.55 +6.29
VL-Rotate CLIP[35] 35.34 +12.12 20.69 +6.43

Table 4. Top: Ablation study results for VL-Rotate using different
language models. Bottom: Ablation study results for VL-Rotate
using variant CLIP text encoder.

Method Params GFLOPs FPS OoD mAP
RetinaNet OBB[28] 36.52 M 133.35 699.2 14.26

w/ VL-Rotate 41.62 M 201.36 681.6 20.69
RTMDet-l[32] 52.27 M 124.66 692.8 22.79
w/ VL-Rotate 55.88 M 171.36 676.8 26.12

Table 5. Ablation study results for VL-Rotate inference informa-
tion on DA task.

Similarly, unless specified, VL-Rotate was implemented in 468
RetinaNet with RetinaNet serving as the baseline. 469
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Figure 4. Visualization of VL-Rotate and the baseline.
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Figure 5. Ablation study results of target domain for VL-Rotate
about (a) different p on DA task; (b) different shot on DG task.

4.3.1. Performance Analysis of Components470

To evaluate the impact of VL-Rotate, we conduct a series471
of controlled experiments on DA task. We divide CFT into472
three parts: TCHA, score merge, and TRFS. The results473
show that each of the components achieved different de-474
grees of improvement in detection accuracy. When com-475
bined, these components work synergistically within VL-476
Rotate, leading to a collective improvement of 12.12/6.43%477
ID/OoD mAP. Additionally, the MFHD module is evalu-478
ated separately using high-gradient masked and high-GSNR479
masked conditions. The results demonstrate that the best480
performance is achieved by combining both gradient and481
GSNR masks.482

4.3.2. Various Language Models483

Tab. 4 shows the impact of different language models on484
VL-Rotate. Using W2V [34] leads to a 6.07% mAP drop485
while BERT [6] causes 3.75% mAP gains in unseen data.486
In contrast, VL-Rotate using CLIP’s text encoder can more487
effectively leverage the rich prior knowledge, outperform-488
ing W2V and BERT by 12.5% and 2.68% OoD mAP.489

4.3.3. Varient CLIP Text Encoder490

Tab. 4 reports the performance of using different CLIP vari-491
ants as text encoders. Compared to EVA02-CLIP [42],492
which explores CLIP through feature distillation, Long-493
CLIP [63], which enhances short text capabilities and sup-494

ports long text input, and SigLIP [62], which reduces the 495
number of tokens and uses Sigmoid loss for training, the 496
original CLIP achieves the best performance on VL-Rotate. 497
For fair comparison, all models were experimented with the 498
same setting and the base scale weights. 499

4.3.4. Mask Dropout Elements 500

Fig. 5(a) shows the performance on the target data when 501
muting the top-p largest elements of the classification fea- 502
tures. The results indicate that the selection of p should not 503
be too large or too small. A suitable p enables the model to 504
generalize better on unseen target domains. 505

4.3.5. Number of Shot 506

Fig. 5(b) shows the performance of using different shot 507
numbers for training in VL-Rotate and RetinaNet on DG 508
task. Our method consistently outperforms the baseline, 509
demonstrating VL-Rotate’s robustness and stability. 510

4.3.6. Feature Space Visualization 511

Fig. 4 shows the visualization results of VL-Rotate and 512
baseline using GradCam [39]. Compared to the baseline, 513
VL-Rotate focuses more object regions. 514

4.3.7. Inference Efficiency 515

Tab. 5 presents the inference performance and efficiency of 516
our method on the DA task. Compared to the baseline, our 517
method improves mAP by 45.09% and 14.61%, with only a 518
slight reduction in FPS by 2.52% and 2.31%, respectively. 519

5. Conclusion and Future Work 520

In this study, we tackled the complex challenge of few-shot 521
out-of-distribution (OoD) generalized rotated object detec- 522
tion by introducing VL-Rotate, a versatile vision-language 523
framework. VL-Rotate comprises two key modules: CLIP- 524
guided Fine-Tuning (CFT) and Masked Feature Heuristics 525
Dropout (MFHD), each contributing to robust performance 526
under domain shifts. CFT enhances generalization by inte- 527
grating text features into high-dimensional object represen- 528
tations, thereby improving the model’s ability to adapt to 529
distribution shifts and making better use of instance-level 530
annotations for fine-grained learning. MFHD selectively 531
deactivates classification features based on feature gradients 532
and GSNR, promoting more stable predictions on unseen 533
data. Extensive experiments on domain adaptation and gen- 534
eralization tasks confirm VL-Rotate’s state-of-the-art per- 535
formance in few-shot OoD scenarios, advancing the field 536
of rotated object detection by addressing its most challeng- 537
ing variants. We currently focus on the few-shot setting 538
following CoOp and Out-of-Distribution setting. In the fu- 539
ture, we will investigate VL-Rotate’s performance in open- 540
vocabulary rotated object detection, further exploring novel 541
classes and zero-shot learning. 542
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